211 research outputs found

    PACKER: a switchbox router based on conflict elimination by local transformations

    Get PDF
    PACKER is an algorithm for switchbox routing, based on a novel approach. In an initial phase, the connectivity of each net is established without taking the other nets into account. In general, this gives rise to conflicts (short circuits). In the second stage, the conflicts are removed iteratively using connectivity-preserving local transformations. They reshape a net by displacing one of its segments without disconnecting it from the net. The transformations are applied in a asystematic way using a scan line technique. The results obtained by PACKER are very positive: it solves all well-known benchmark example

    Modeling and Compensation of Nonlinear Distortion in Horn Loudspeakers

    Get PDF
    Horn loaded compression drivers are widely used in the area where high sound pressure levels together with good directivity characteristics are needed. Major disadvantage of this kind of drivers is the considerable amount of nonlinear distortion. Due to the quite high air pressures in the driver the air is driven into its nonlinear range. This paper describes a technique to reduce the distortion caused by this phenomenon. Using a Digital Signal Processor (DSP), a feedforward compensation technique, based on an equivalent lumped parameter circuit, is implemented and tested in real–time in series with the loudspeaker. Measurement and simulation results are given. The overall conclusion is that a distortion reduction is obtained in the frequency span from 600 to 1050 Hz

    A versatile algorithm for two-dimensional symmetric noncausal modeling

    Get PDF
    In this paper a novel algorithm is presented for the efficient two-dimensional (2-D) symmetric noncausal finite impulse response (FIR) filtering and autoregressive (AR) modeling. Symmetric filter masks of general boundaries are allowed. The proposed algorithm offers the greatest maneuverability in the 2-D index space in a computational efficient way. This flexibility can be taken into advantage if the shape of the 2-D mask is not a priori known and has to be dynamically configured

    Digital compensation of nonlinear distortion in loudspeakers

    Get PDF
    The authors present a method to compensate for loudspeaker distortion in real time by nonlinear digital signal processing implemented on a digital signal processor (i.e., the TMS320C30 DSP). Based on the literature, an electrical equivalent circuit of an electrodynamic loudspeaker is developed, resulting in a linear lumped parameter model. The parameters in this model are matched with the measurements of a selected test loudspeaker. The linear model is extended to include nonlinear effects by developing the parameters as a function of the voice coil excursion of the loudspeaker in a Taylor series expansion. The resulting nonlinear system is described by a Volterra series. On the basis of this description, an inverse circuit is designed for the second-order nonlinear distortion. This circuit was implemented in real time on the DSP, using a high-level design and code generation system. Simulations and experiments are presente

    Comparison of Two Methods for Measurement of Horn Input Impedance

    Get PDF
    Two methods to measure the acoustic input impedance of a horn are compared. First method measures standing wave patterns in a tube which is loaded by the horn. The input impedance is calculated from the position of the first minimum in the standing wave pattern, and the ratio of maximum and minimum sound pressure level in the tube. Secondly we applied a direct method. A novel flow sensor, the microflown, is used together with a pressure microphone, which are mounted in the throat of the horn. Results from both measurements are compared with simulated models

    Passing to the Limit in a Wasserstein Gradient Flow: From Diffusion to Reaction

    Get PDF
    We study a singular-limit problem arising in the modelling of chemical reactions. At finite {\epsilon} > 0, the system is described by a Fokker-Planck convection-diffusion equation with a double-well convection potential. This potential is scaled by 1/{\epsilon}, and in the limit {\epsilon} -> 0, the solution concentrates onto the two wells, resulting into a limiting system that is a pair of ordinary differential equations for the density at the two wells. This convergence has been proved in Peletier, Savar\'e, and Veneroni, SIAM Journal on Mathematical Analysis, 42(4):1805-1825, 2010, using the linear structure of the equation. In this paper we re-prove the result by using solely the Wasserstein gradient-flow structure of the system. In particular we make no use of the linearity, nor of the fact that it is a second-order system. The first key step in this approach is a reformulation of the equation as the minimization of an action functional that captures the property of being a curve of maximal slope in an integrated form. The second important step is a rescaling of space. Using only the Wasserstein gradient-flow structure, we prove that the sequence of rescaled solutions is pre-compact in an appropriate topology. We then prove a Gamma-convergence result for the functional in this topology, and we identify the limiting functional and the differential equation that it represents. A consequence of these results is that solutions of the {\epsilon}-problem converge to a solution of the limiting problem.Comment: Added two sections, corrected minor typos, updated reference

    Response of a Hexagonal Granular Packing under a Localized External Force: Exact Results

    Full text link
    We study the response of a two-dimensional hexagonal packing of massless, rigid, frictionless spherical grains due to a vertically downward point force on a single grain at the top layer. We use a statistical approach, where each mechanically stable configuration of contact forces is equally likely. We show that this problem is equivalent to a correlated qq-model. We find that the response is double-peaked, where the two peaks, sharp and single-grain diameter wide, lie on the two downward lattice directions emanating from the point of the application of the external force. For systems of finite size, the magnitude of these peaks decreases towards the bottom of the packing, while progressively a broader, central maximum appears between the peaks. The response behaviour displays a remarkable scaling behaviour with system size NN: while the response in the bulk of the packing scales as 1N\frac{1}{N}, on the boundary it is independent of NN, so that in the thermodynamic limit only the peaks on the lattice directions persist. This qualitative behaviour is extremely robust, as demonstrated by our simulation results with different boundary conditions. We have obtained expressions of the response and higher correlations for any system size in terms of integers corresponding to an underlying discrete structure.Comment: Accepted for publication in JStat; 33 pages, 10 figures; Section 2.2 reorganized and rewritten; Details about the simulation procedure added in Sec.3.1. ; A new section, summarizing the final results and the calculation procedure adde

    Comprehensive assessment of meteorological conditions and airflow connectivity during HCCT-2010

    Get PDF
    This study presents a comprehensive assessment of the meteorological conditions and atmospheric flow dur- ing the Lagrangian-type “Hill Cap Cloud Thuringia 2010” experiment (HCCT-2010), which was performed in Septem- ber and October 2010 at Mt. Schmücke in the Thuringian Forest, Germany and which used observations at three measurement sites (upwind, in-cloud, and downwind) to study physical and chemical aerosol–cloud interactions. A Lagrangian-type hill cap cloud experiment requires not only suitable cloud conditions but also connected airflow condi- tions (i.e. representative air masses at the different measure- ment sites). The primary goal of the present study was to identify time periods during the 6-week duration of the ex- periment in which these conditions were fulfilled and there- fore which are suitable for use in further data examinations. The following topics were studied in detail: (i) the general synoptic weather situations, including the mesoscale flow conditions, (ii) local meteorological conditions and (iii) lo- cal flow conditions. The latter were investigated by means of statistical analyses using best-available quasi-inert trac- ers, SF6 tracer experiments in the experiment area, and re- gional modelling. This study represents the first applica- tion of comprehensive analyses using statistical measures such as the coefficient of divergence (COD) and the cross- correlation in the context of a Lagrangian-type hill cap cloud experiment. This comprehensive examination of local flow connectivity yielded a total of 14 full-cloud events (FCEs), which are defined as periods during which all connected flow and cloud criteria for a suitable Lagrangian-type ex- periment were fulfilled, and 15 non-cloud events (NCEs), which are defined as periods with connected flow but no cloud at the summit site, and which can be used as refer- ence cases. The overall evaluation of the identified FCEs provides the basis for subsequent investigations of the mea- sured chemical and physical data during HCCT-2010 (see http://www.atmos-chem-phys.net/special_issue287.html). Results obtained from the statistical flow analyses and regional-scale modelling performed in this study indicate the existence of a strong link between the three measurement sites during the FCEs and NCEs, particularly under condi- tions of constant southwesterly flow, high wind speeds and slightly stable stratification. COD analyses performed using continuous measurements of ozone and particle (49nm di- ameter size bin) concentrations at the three sites revealed, particularly for COD value
    • …
    corecore